Чувства роботов: ИК-датчик расстояния Sharp GP2Y0A21YK. Инфракрасный лазерный дальномер Технические характеристики инфракрасного дальномера Sharp

Роботам, как и смерть всем человекам очень нужны органы чувств, чтобы ориентироваться в пространстве. Инфракрасный дальномер Sharp GP2Y0A21YK очень подходит на эту роль, если вам требуется избегать столкновения с препятствиями или знать, где примерно это самое препятствие находится.

Кстати, возможно, у вас дома уже есть один из роботов, где используются похожие датчики. Это практически все вменяемые китайские роботы-пылесосы и, полагаю, многие модели Roomba. И, вероятно, многие другие.

А если уж этим сенсорам нашлось место в более-менее серьезной технике, то и мы найдем им применение, правда?

Чтобы не кривить душой, скажу сразу: я заказывал эти датчики не просто поиграться. Наоборот, с самого начала знал, что они мне пригодятся, чтобы сделать интерактивную лампу, которая меняет интенсивность свечения в зависимости от положения ладони над ней.

Конечно, реальность внесла свои коррективы и в итоге . Иными словами, у нее теперь пять режимов: ночник, светильник с регулировкой яркости, термометр, «северное сияние» с ручной регулировкой и автоматическое северное сияние.

А кроме того - пара сервисных функций: включение и выключение фонового и верхнего освещения в комнате.

Вот как это работает:

Ну а теперь самое время подробнее рассказать о датчике, благодаря которому все и случилось.

Как я говорил в самом начале, Sharp GP2Y0A21YK - это инфракрасный дальномер. А значит, он оснащен ИК-излучателем и ИК-приемником: первый служит источником луча, отражение которого ловит второй. При этом ИК-лучи датчика для человеческого глаза невидимы (хотя можно различить красное мерцание, если посмотреть в датчик) и при такой интенсивности безвредны.

На домашних животных они так же не оказывают никакого влияния.

Согласно характеристики такие:

  • Напряжение питания: 5В
  • Максимальный потребляемый ток: 40 мА (типичный - 30 мА)
  • Диапазон работы: 10 см - 80 см
Что касается конкурентов, то по сравнению с ультразвуковыми сенсорами, например, сверхпопулярным HC-SR04, у этого датчика есть и достоинства, и недостатки. К достоинствам можно отнести все то, что сказано выше, т.е. нейтральность и безвредность.

А недостатки - меньший радиус действия (у HC-SR04 порядка 4 м) и зависимость от внешних помех, в том числе - некоторых типов освещения. Я, к примеру, встречал упоминания, что солнечный свет может влиять на показания датчика.

Датчик поставляется в спартанском комплекте, т.е. сам датчик и кабель с разъемом для подключения к датчику. На другой стороне - просто залуженные провода, что не очень удобно для использования с Arduino Uno, но вполне подходит для контроллеров без распаянных разъемов. Так как я планировал использовать датчик с Arduino Pro Mini, это был вполне подходящий вариант - провода просто запаял в макетную плату.

Провода различаются по цвету: желтый - сигнал, черный - земля, красный - плюс питания (+5В).

Выход датчика аналоговый (хотя в даташите почему-то написано - цифровой). То есть, напряжение на нем пропорционально расстоянию до препятствия. Вместе с тем, как и в случае с ультразвуком, для датчика есть разница между разными типами препятствий.

В связи с этим в даташите Sharp приводит данные при использовании в качестве отражателей эталонных карточек Kodak с коэффициентом отражения 90%. Судя по нему, на 20 см датчик выдает 1.3В.

Давайте сравним с моими экспериментальными данными:

Напоминаю, что аналоговый вход Arduino работает в диапазоне 0В - 5В и имеет 1024 ступеней, отсюда расчет: (5/1024)*(показания датчика). Так что если учесть то, что все своими (дрожащими) руками, то показания вполне вписываются в характеристики датчика. И заодно видно, что черная поверхность вносит свои коррективы.

Так он светит

Вместе с тем, как заметил внимательный читатель, есть и специфика. Суть в том, что когда препятствие находится ближе нижней границы радиуса действия (10 см), датчик начинает считать, что препятствие, наоборот, удаляется (когда накрыл рукой показания зафиксировались на 345).

Примерно так это выглядит:

Отсюда вывод: хотя для многих целей даташит вполне адекватен, иногда имеет смысл провести эксперименты, чтобы потом не было мучительно больно. И это особенно актуально, если датчик несколько заглублен (или закрыт ИК-прозрачным материалом), а значит, может получать отражения от стенок или других элементов корпуса.

Например, я столкнулся с тем, что Евлампия, будучи установленной на штатном месте после успешно проведенных «настольных» тестов, стала сходить с ума. Сначала я думал, что виноваты помехи по питанию и даже поставил параллельно питанию датчика пару конденсаторов (10 мкФ и 0.1 мкФ), подтянул аналоговый вход Arduino к нулю через резистор 10 кОм и даже купил сетевой фильтр-розетку.

Но когда это не помогло, то снова вернулся на стол, где покрутил датчик в разные стороны и увидел, что по факту даже если расстояние до ближайшего препятствия больше 80 см, показания датчика заметно меняются. Так что если ваши подопечные будут неадекватны - проверяйте фактические показания в реальных условиях.

Вот, например, элементарный скетч, который, во-первых, с интервалом в полсекунды выводит показания датчика, а, во-вторых, зажигает светодиод Arduino, если показания попадают в диапазон от 100 до 200:

// Желтый - A0, Черный - земля, Красный - +5В unsigned int l; void setup() { Serial.begin(9600); pinMode(A0, INPUT); pinMode(13, OUTPUT); l = 0; } void loop() { l = analogRead(A0); Serial.println(l); delay(1000); if (l > 100 && l < 200) { digitalWrite(13, HIGH); } else { digitalWrite(13, LOW); } }

Если подводить итог, то датчик, хотя и немного капризен, очень прост в использовании и относительно дешев.

Использовать его можно в роботах, а также для контроля пересечения дверных проемов, в каких-нибудь интерактивных устройствах, управляемых жестами и в чем-то, что еще подскажет фантазия.

Планирую купить +32 Добавить в избранное Обзор понравился +38 +67

В данной статье рассмотрим подключение и работу с ИК-датчиком измерения расстояния SHARP GP2Y0A02YK0F.
В отличие от того же , данный датчик имеет гораздо более скромный диапазон измерений, но все равно обладает рядом полезных отличительных свойств. Например, данный датчик позволяет измерять расстояние даже через прозрачные поверхности (правда, теряя точность показаний, но все же).

Подключение датчика:

GND на любой из GND пинов--- ардуино

OUT на любой из аналоговых входов ардуино (в примерах подсоединено к A0)

VCC на + 5 вольт на ардуино

Основные технические характеристики:

Диапазон измерения расстояния: от 20 до 150 см

Аналоговый выход

Размеры: 29.5x13x21.6 мм

Потребление тока: 33 мА

Напряжение питания: от 4.5 до 5.5 В

Её необходимо распаковать и добавить в папку "libraries" в папке с Arduino IDE. Не забывайте перезагрузить среду, если на момент добавления IDEшка была открыта.

В чем особенность данной библиотеки и почему именно её рекомендуем к использованию? Ответ прост и кроется в принципе её работы. Для измерения расстояния используется множество замеров, из которых отбрасываются ошибочные, которые сильно отличаются от соседних. По утверждениям авторов - 12% всех показаний вносят 42% ошибки в итоговое значение расстояния, если не отбрасывать ошибочные измерения.

Перейдем к программному коду - примеру работы с датчиком (пример подойдет также для датчика GP2Y0A21Y, в коде необходимо будет изменить значение model на 1080):

Пример программного кода

#include #define ir A0 //пин, к которому подключен датчик. Обязательно аналоговый! #define model 20150 //модель датчика. 1080 для GP2Y0A21Y, 20150 для GP2Y0A02Y SharpIR SharpIR (ir, model); void setup () { Serial .begin (9600); } void loop () { delay (2000); unsigned long pepe1=millis (); // засекаем время до начала измерений int dis=SharpIR .distance(); // получаем расстояние с датчика Serial .print ("Mean distance: " ); // выводим расстояние в монитор порта Serial .println (dis); unsigned long pepe2=millis ()-pepe1; // считаем время, затраченное на измерение Serial .print ("Time taken (ms): " ); // и выводим его Serial .println (pepe2); }

Дальномеры

В этом уроке мы поподробнее познакомимся с дальномерами.

Ультразвуковой дальномер HC-SR04

На сегодняшний день (2016 г) стоит не более 1$ на AliExpress .

Датчик имеет 4 вывода:

  • Vcc – На этот контакт подается питание в 5В.
  • Trig – На этот контакт нужно подать логическую единицу на 10мкс, чтобы дальномер испустил ультразвуковую волну.
  • Echo – После того, как ультразвуковая волна вернется обратно, на этот контакт будет подана логическая единица на время, пропорциональное расстоянию до объекта
  • Gnd – Этот контакт подключается к земле.

Ультразвуковой дальномер – работает по принципу “летучей мыши”. Он посылает ультразвуковую волну и считает время, за которое волна возвратится. Зная скорость звука и время, за которое волна пришла обратно, можно рассчитать расстояние до объекта.

С помощью этого дальномера мы соберем небольшой парктроник, который можно будет увеличить и собрать готовое устройство для парковки автомобиля. Еще я покажу, как можно использовать дальномер для управления своими устройствами.

Дальномер

Давайте соберем простенькую схему для того чтобы понять, как работает дальномер.

Код

#define ECHO 13 #define TRIG 12 void setup() { pinMode(ECHO, INPUT); // На ECHO нужно подать логическую единицу pinMode(TRIG, OUTPUT); //С TRIG мы будем считывать значение расстояния Serial.begin(9600); //Установим соединение с Serial портом } void loop() { //Подаем на TRIG HIGH и сразу LOW digitalWrite(TRIG, HIGH); digitalWrite(TRIG, LOW); //Считываем длину пришедшего сигнала в микросекундах int dist = pulseIn(ECHO, HIGH) / 54; // Делим на 54, чтобы перевести показания в см Serial.println(dist); //Выводим показания дальномера в Serial delay(300); //Ждем немного, чтобы глаз успевал различать показания }

Пояснения

pulseIn(ECHO, HIGH); - С помощью этой функции мы считали время, на которое на пине ECHO устанавливается значение HIGH. Это время считается в микросекундах.

В общем виде pulseIn(); можно записать так:

pulseIn(пин, значение, таймаут);

Пин – Пин, на котором будет производиться подсчет времени.

Значение – Уровень ожидаемого сигнала, при котором будет проводиться подсчет. HIGH или LOW.

Таймаут – время в микросекундах, в течение которого ожидается приход сигнала. По истечении таймаута значение, возвращаемое функцией, будет приравнено к нулю.

Так, с принципом работы дальномера разобрались. Время сделать парктроник для игрушечных машинок.

Парктроник

Схема парктроника выглядит так:

#define ECHO 3 // Прием сигнала с дальномера #define TRIG 2 // Подача сигнала на дальномер #define COUNT 5 // Кол-во светодиодов #define BUZZ 6 // Пин для пищалки #define FIRST 9 // Первый пин светодиодов #define dist_setup 1 //Подстроечный коэффициент #define frequency 5000 void setup() { for(int i = 0; i < COUNT; ++i) //Обозначаем светодиоды как выход... { pinMode(i+FIRST, OUTPUT); } pinMode(ECHO, INPUT); //...ECHO как вход... pinMode(TRIG, OUTPUT); //...TRIG как выход... pinMode(BUZZ, OUTPUT); //...пищалку как выход Serial.begin(9600); //Установим соединение с Serial } void loop() { digitalWrite(TRIG, HIGH); //Подаем команду на дальномер digitalWrite(TRIG, LOW); int dist = pulseIn(ECHO, HIGH) / 54; //Измеряем расстояние до объекта dist = constrain(dist, 2, 60); //Полученные значения загоняем в диапазон от 2 до 60 //Сравниваем полученные показания и включаем нужный режим if (dist < 10) { all_led_on(); } else if (dist < 20 * dist_setup) { four_led_on(); } else if (dist < 30 * dist_setup) { three_led_on(); } else if(dist < 40 * dist_setup) { two_led_on(); } else if(dist < 50 * dist_setup) { one_led_on(); } else { for(int i = 0; i < COUNT; ++i) { digitalWrite(i+FIRST, LOW); } noTone(BUZZ); } } // Описание режимов void one_led_on() { digitalWrite(9, LOW); digitalWrite(10, LOW); digitalWrite(11, LOW); digitalWrite(12, LOW); digitalWrite(13, HIGH); tone (BUZZ, frequency, 1000); delay(1000); } void two_led_on() { digitalWrite(9, LOW); digitalWrite(10, LOW); digitalWrite(11, LOW); digitalWrite(12, HIGH); digitalWrite(13, HIGH); tone(BUZZ, frequency, 700); delay(700); } void three_led_on() { digitalWrite(9, LOW); digitalWrite(10, LOW); digitalWrite(11, HIGH); digitalWrite(12, HIGH); digitalWrite(13, HIGH); tone(BUZZ, frequency, 400); delay(400); } void four_led_on() { digitalWrite(9, LOW); digitalWrite(10, HIGH); digitalWrite(11, HIGH); digitalWrite(12, HIGH); digitalWrite(13, HIGH); tone(BUZZ, frequency, 200); delay(200); } void all_led_on() { for(int i = 0; i < COUNT; ++i) { digitalWrite(i+FIRST, HIGH); } tone(BUZZ, frequency, 5000); delay(5000); }

Пояснения

Парктроник снабжен светодиодной и звуковой индикацией. При приближении объекта на заданные расстояния раздаются более частые сигналы, и загорается больше светодиодов.

dist_ setup – это коэффициент, с помощью которого можно регулировать расстояние до срабатывания парктроника.

У меня он равен единице. Если вам нужно уменьшить расстояние – нужно уменьшить коэффициент, но тогда он будет в виде 0.xxx. Для этого вводится переменная типа float.

Частоту писка можно также изменять. Для этого нужно изменить значение frequency . Но следует помнить, что пищит пьезоизлучатель ужасно. Крайне. И, мне кажется, что он быстро отобьет у вас желание им пользоваться дальше или дольше 5 минут.

Как вариант – понизить частоту до 20 Гц или подключить обычный динамик на 8 Ом, к примеру.

Пароль

Теперь попробуем сделать секретный шифр, который зажигает светодиоды. А если в схему включить сервомотор с задвижкой, то можно сделать замок на дверь или ящичек с паролем.

Внимание на схему.

Код

//Пины первого дальномера #define TRIG1 12 #define ECHO1 13 //Пины второго дальномера #define TRIG2 10 #define ECHO2 11 //Светодиоды #define FIRST 3 #define COUNT 5 //Кнопка сброса #define RESET 2 //Переменные для пароля int key1; int key2; int key3; void setup() { //Обозначение светодиодов как выход for(int i = 0; i < COUNT; i++) { pinMode(i+FIRST, OUTPUT); } //Обозначение пинов на дальномерах pinMode(TRIG1, OUTPUT); pinMode(ECHO1, INPUT); pinMode(TRIG2, OUTPUT); pinMode(ECHO2, INPUT); pinMode(RESET, INPUT_PULLUP); } void loop() { //Подача сигнала на дальномеры digitalWrite(TRIG2, HIGH); digitalWrite(TRIG2, LOW); int dist2 = pulseIn(ECHO2, HIGH,3000) / 54; digitalWrite(TRIG1, HIGH); digitalWrite(TRIG1, LOW); int dist1 = pulseIn(ECHO1, HIGH) / 54; //Дополнительная индикация "ввода" символов if(dist1 < 10 && dist2 < 10) { digitalWrite(5, HIGH); delay(100); } if(dist2 > 20 && dist2 < 25) { digitalWrite(4, HIGH); delay(100); } if(dist1 > 20 && dist1 < 25) { digitalWrite(6, HIGH); delay(100); } //Код пароля + индикация "ввода" символов if(dist2 > 10 && dist2 <15) { key1 = 1; digitalWrite(3, HIGH); delay(100); } if(dist1 > 10 && dist1 < 15) { digitalWrite(7, HIGH); delay(100); key1 = 0; } if(dist1 > 20 && dist1 < 25 && key1 == 1) { key2 = 1; } else if(dist2 > 20 && dist2 <25 || key1 == 0) { key1 = 0; key2 = 0; } if(dist1 < 10 && dist2 < 10 && key2 == 1) { key3 = 1; } if(key3 == 1) { for(int i = 0; i < COUNT; i++) { digitalWrite(i + FIRST, HIGH); } } if(key3 == 0) { for(int i = 0; i < COUNT; i++) { digitalWrite(i + FIRST, LOW); } } //Сброс пароля boolean res = digitalRead(RESET); if(res == 0) { key1 = 0; key2 = 0; key3 = 0; } }

Пояснения

Для того чтобы зажечь все пять светодиодов – нужно знать последовательность действий, которую нужно выполнять. Вот для вас задание – “Не смотря объяснения ниже, определить, какую же последовательность действий нужно выполнять, чтобы загорелись все пять светодиодов”

Это выполнимая задача, если вы читали первую часть курса и разобрались в работе функции if().

Разобрались? Если да – молодцы, а если нет – почти молодцы.

Всего есть три “символа ввода” – от 0 до 10, от 10 до 15 и от 20 до 25.

Состояние от 0 до 10 включается, если поднести обе руки на расстояние от 0 до 10 см к обоим дальномерам. Если это сделать – загорится желтый светодиод.

Состояние от 10 до 15 включится, когда вы поднесете руку к правому или левому дальномеру на расстояние от 10 до 15 см. О совершении этого действия вам подскажут крайний левый светодиод для левой руки и крайний правый – для правой.

Состояние от 20 до 25 включается в тот момент, когда расстояние от руки до одного из дальномеров будет от 20 до 25 см. Об этом вас проинформируют второй слева и второй справа светодиоды для левой и правой руки соответственно.

Стоит отметить, что выполнять последовательность нужно строго.

  • Поднести ПРАВУЮ руку на расстояние от 10 до 15.
  • После того, как загорелся крайний правый светодиод – поднести ЛЕВУЮ руку на расстояние от 20 до 25. Все это делается, не меняя положения правой руки.
  • После индикации второго слева светодиода – отвести ЛЕВУЮ руку влево, чтобы не загорелся крайний левый светодиод, иначе – код нужно будет набирать сначала. ПРАВУЮ руку приблизить на расстояние от 0 до 10, а ЛЕВУЮ подвести на это же расстояние, не задевая расстояние от 10 до 15
  • Светодиоды должны гореть и не реагировать на ваши действия.
  • Нажать кнопку RESET, для сброса пароля. Светодиоды должны потухнуть.

Каждое неверное движение сбрасывает пароль, и его нужно вводить заново. С первого раза может и не получиться, но спустя несколько минут тренировки, я уверен – все получится, и светодиоды загорятся.

После того, как у вас будет получаться зажечь все светодиоды, можно вам проверить себя и изменить код так, чтобы последовательность была другая – на ваше усмотрение. Можно сделать больше “символов”, а можно оставить те же, но сделать каждый символ с использованием двух дальномеров. Это будет заданием для самостоятельного решения.

Инфракрасный дальномер Sharp

С этими дальномерами все даже проще. Подключать их нужно, как и все аналоговые датчики. И даже можно без резистора на 10 кОм. Если вы по каким-то причинам этого не умеете, то это описано в моей статье про .

Терменвокс

Есть такой музыкальный инструмент, как терменвокс. И сейчас мы соберем подобие этого инструмента.

Код

// Обозначаем дальномер, кнопку и пищалку #define RFIND A5 #define BUT 9 #define BUZ 8 // Логические переменные для кнопки bool sound_on = false; bool but_up = true; void setup() { pinMode(RFIND, INPUT); pinMode(BUZ, OUTPUT); pinMode(BUT,INPUT_PULLUP); } void loop() { //Код для включения и выключения терменвокса bool but_now = digitalRead(BUT); if(but_up && !but_now) { delay(10); bool but_now = digitalRead(BUT); if(!but_now) { sound_on = !sound_on; } } but_up = but_now; //Код для терменвокса if(sound_on == 1) { int val, freq; val = analogRead(RFIND); //Со значениями constrain и map можно поиграть, как душе угодно val = constrain(val, 100, 400); freq = map(val, 100, 400, 1000, 2500); tone(BUZ, freq, 20); } }

Пояснения

Если нажать кнопку, то из пищалки или динамика, смотря, что вы подключили, раздастся сигнал, который будет варьироваться в соответствии с расстоянием от дальномера до вашей руки.

Кнопка нужна для остановки или запуска нашего “Терменвокса”

Итог

Сегодня мы поближе познакомились с дальномерами и провели несколько небольших экспериментов, два из которых можно использовать в реальной жизни. Парктроник – помог бы припарковаться, а Кодовый замок можно усовершенствовать таким образом, что при вводе правильного пароля, сервомотор открывает защелку на двери в вашу комнату, например.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Схема 1
Плата Arduino

Arduino Uno

1 В блокнот
Макетная плата Breadboard-half 1 В блокнот
Соединительные провода "Папа-Папа" 4 В блокнот
Дальномер HC-SR04 2 В блокнот
Схема 2
Плата Arduino

Arduino Uno

1 В блокнот
Дальномер HC-SR04 1 В блокнот
Соединительные провода "Папа-Папа" 15 В блокнот
Макетная плата Breadboard-half 1 В блокнот
Пьезоизлучатель 1 В блокнот
Резистор

220 Ом

1 В блокнот
Светодиод

АЛ102Б

2 В блокнот
Светодиод

АЛ307В

1 В блокнот
Светодиод

АЛ307Д

2 В блокнот
Схема 3
Плата Arduino

Arduino Uno

1 В блокнот
Дальномер HC-SR04 2 В блокнот
Резистор

220 Ом

5

Инфракрасный дальномер позволяет определять расстояние до объектов. Это модель GP2Y0A021 компании Sharp. Сенсор определяет расстояние по отражённому лучу света в инфракрасном спектре. Дальномер может использоваться для объезда препятствий и ориентирования на местности.

Выводом является аналоговый сигнал, с уровнем напряжения, зависимым от расстояния до цели в установленном направлении.

Датчик подключается к управляющей электронике через 3 провода. При подключении к Arduino будет крайне удобно использовать Troyka Shield. Шлейф для подключения включён в комплект.

Внимание! Распиновка питания этого сенсора может различаться. Перед включением модуля ознакомьтесь с особенностями подключения модулей DFRobot.

Чтобы надёжно установить дальномер куда-либо, существует специальное крепление.

Характеристики

  • Напряжение питания: 4,5–5,5 В
  • Потребляемый ток: 30–40 мА
  • Диапазон расстояний: 10–80 см

Ограничения

Поскольку в основе работы устройства используется свет, сенсор плохо подходит для определения расстояния до светопоглощающих объектов. Дальномер даже не почувствует прозрачную поверхность, например из пластика или оргстекла. Для определения расстояний в таком окружении подойдёт ультразвуковой дальномер URM37 или HC-SR04.

Этот инфракрасный дальномер имеет небольшую мёртвую зону перед собой: 10 см. Если необходимо рассматривать препятствия на меньших расстояниях, а предельное расстояние не так важно, рассмотрите дальномер для дистанций 4-30 см той же линейки. Если же ваше устройство должно видеть дальше, обратите внимание на дальномер для дистанций 20-150 см. Можно добиться большей гибкости, комбинируя датчики с различными диапазонами.